累乗数(るいじょうすう、英: perfect power)とは、他の自然数の累乗になっている自然数、すなわち、mk(m, k は自然数で k は 2 以上)の形の数を指す。
累乗数を 1 から小さい順に列記すると
- 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, …(オンライン整数列大辞典の数列 A001597)
累乗数の性質
4 を法として 2 と合同でない数は 2 つの累乗数の差として表される。実際、(n 1)2 − n2 = 2n 1, (n 2)2 − n2 = 4n 4 が成立する。
また、2 = 33 − 52, 10 = 133 − 37 など、4 を法として 2 と合同な数(単偶数)に関しても累乗数の差として表せる場合があることが知られている。6, 14, 34 などがそのように表せるかどうかは知られていない。
差が 1 となる累乗数の組は (8, 9) のみであると、1844年にカタラン (Eugène Charles Catalan) によって予想され(カタラン予想)、2002年にプレダ・ミハイレスクによって証明された。
一般に、累乗数を小さいほうから a1 = 1, a2 = 4, … と並べるとき、ai 1 − ai は i と共に無限大に発散すると予想されている(Pillai)。この予想は、任意の自然数 a に対して方程式 xn − ym = a は有限個の自然数解(x > 0, y > 0, m ≥ 2, n ≥ 2)しかないことと同値である。Chudnovsky はこれを証明したと主張したが、本当に証明されたのかは不明である。エルデシュは ai 1 − ai > ic となる正の定数 c が存在すると予想している。
方程式 xn − ym = a(a は与えられた自然数, x > 0, y > 0, m ≥ 2, n ≥ 2)は a のほかにもう一つの変数を固定すれば、有限個の解しか存在しないことが知られている。m, n のいずれかを固定した場合には、Schinzel と Tijdeman の一般的な不定方程式 ym = P(x) に関する結果から従い、x, y のいずれかを固定した場合には一般の線形循環数列に関する Shorey と Tijdeman の結果から従う。
3, 7, 8, 15, … など、1 を除く累乗数から 1 を引いた数の逆和は、1 になる。すなわち、
である。これは、ゴールドバッハ・オイラーの定理と呼ばれている。
累乗数に関する性質
数字和・数字根
- ある数 m を 2 乗した数の各位の和(数字和)を求め、それをさらに 1 桁になるまで繰り返すと結果(数字根)は 1, 4, 7, 9 の 4 通りにしかならない。(例:642 = 4096 → 4 0 9 6 = 19 → 1 9 = 10 → 1 0 = 1)
- ある数 m を n 乗した数の各位の和が元の数 m に等しい数が存在する。(例:74 = 2401 → 2 4 0 1 = 7)
累乗和
- 自然数の累乗和
- 上記の表において最初の数は自然数、2 番目は三角数、3 番目は四角錐数、4 番目は三角数の 2 乗である。
- 自然数の自然数乗 (kk) の累乗和は 1, 5, 32, 288, 3413, 50069, 873612, 17650828, …である。(A001923)
- (例. 288 = 11 22 33 44)
- 負の数を除いた 3 連続整数の 4 乗和は 17, 98, 353, 962, 2177, 4322, 7793, 13058, … である。(A160827)
- 同じ数の累乗和(整数乗)
- 上記の表において3番目の数 (a0 a1 a2) は A002061、4番目 (a0 a1 a2 a3) は A053698を参照。
- 同じ数の累乗和(自然数乗)
- 上記の表において 2 番目の数 (a1 a2) は矩形数、3 番目 (a1 a2 a3) は A027444、4 番目は A027445、5 番目は A152031、6 番目は A228290、7 番目は A228291、8 番目は A228292、9 番目は A228293、10 番目は A228294 を参照。
脚注
注釈
出典
参考文献
- Section D9 in Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer-Verlag, 2004.
- T. N. Shorey and R. Tijdeman, Exponetial Diophantine Equations, Cambridge Tracts in Mathematics, 87, Cambridge University Press, 1986.
- P. Mihăilescu, "Primary Cyclotomic Units and a Proof of Catalan's Conjecture." J. reine angew. Math. 572 (2004), 167–195.
関連項目
- 平方数
- 立方数
- 二重平方数(四乗数)
- 五乗数
- 六乗数
- 七乗数
- 八乗数
- 累乗
- カタラン予想
- 素数冪
- 二個の平方数の和
- 三個の平方数の和
- 3つの立方数の和
外部リンク
- Ivars Peterson's MathTrek
- Metsänkylä, Tauno (2003). Catalan's conjecture: another old Diophantine problem solved, Bull. (New Ser.) Amer. Math. Soc. 41 (1), 43–57.
- Weisstein, Eric W. "Perfect Power". mathworld.wolfram.com (英語).




